6,941 research outputs found

    Study of the winter 2005 Antarctica polar vortex

    Full text link
    During winter and springtime, the flow above Antarctica at high altitude (upper troposphere and stratosphere) is dominated by the presence of a vortex centered above the continent. It lasts typically from August to November. This vortex is characterized by a strong cyclonic jet centered above the polar high. In a recent study of our group (Hagelin et al., 2008) of four different sites in the Antarctic internal plateau (South Pole, Dome C, Dome A and Dome F), it was made the hypothesis that the wind speed strength in the upper atmosphere should be related to the distance of the site to the center of the Antarctic polar vortex. This high altitude wind is very important from an astronomical point of view since it might trigger the onset of the optical turbulence and strongly affect other optical turbulence parameters. What we are interested in here is to localize the position of the minimum value of the wind speed at high altitude in order to confirm the hypothesis of Hagelin et al. (2008).Comment: 3rd ARENA conference, 11-15 May 2009 EAS Publication Serie

    Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies

    No full text
    A transient thermal finite element model has been created of the pulsed thermography (PT) and pulse phase thermography (PPT) experimental procedure. The model has been experimentally validated through the application of four case studies of varying geometries and materials. Materials used include aluminium, carbon fibre reinforced plastic (CFRP) and adhesively bonded joints. The same four case studies have also formed a basis for comparison between three experimental techniques: PT, PPT and the more established ultrasonic (UT) c-scan.Results show PPT to be advantageous over PT due to its deeper probing as it is less influenced by surface features. Whilst UT is able to reveal all the defects in these case studies, the time consuming nature of the process is a significant disadvantage compared to the full field thermography methods.Overall, the model has achieved good correlation for the case studies considered and it was found that the main limiting factor of the PT model accuracy was knowledge of thermal material properties such as conductivity and specific heat. Where these properties were accurately known the model performed very well in comparison with experimental results. PPT modelling performed less well due to the method of processing the PT data which aims to emphasise small differences. Hence inaccuracies in inputted values such as material properties have a much greater influence on the modelled PPT data. The model enables a better understanding of PT and PPT and provides a means of establishing the experimental set-up parameters required for different components, allowing the experimental technique to be appropriately tailored to more complex situations including bonded joints or structures where several materials are present.The paper ends with a section on defect detectability based on thermal diffusivity contrast between the defect and the bulk material. It shows that in aluminium, because of its higher conductivity, greater thermal contrast is achieved for small differences in diffusivity. Regions where the diffusivity ratio between defect and bulk materials was insufficient to provide thermal contrast for defect identification were found. PPT phase data is shown to reduce the extent of such regions increasing the detectability of defects. Effusivity is introduced as a means of determining the thermal contrast between the defect and non-defective areas and hence establishing the defect detectability

    Magnetic Resonance

    Get PDF
    Contains research objectives, summary of research and reports on one research project.National Science Foundation (Grant GP-19988)National Institutes of Health (Grant 5 RO1 GM16552-03

    Magnetic Resonance

    Get PDF
    Contains research objectives.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E

    A metastatic secretory gastric plasmacytoma with aberrant CD3 expression in a dog

    Get PDF
    A 10-year-old crossbred dog was presented with a 6-week history of hematemesis, melena, anorexia, and lethargy. Clinical evaluation revealed a gastric mass with a regional lymphadenomegaly as well as a monoclonal gammopathy manifesting as hyperglobulinemia. Cytologic and histopathologic analyses were consistent with a round cell neoplasm; neoplastic cells showed nuclear immunoreactivity for MUM1 and diffuse cytoplasmic reactivity for CD3. Polymerase chain reactions performed on fixed and fresh tissue identified a clonal rearrangement with an IgH primer set. An extramedullary plasmacytoma (EMP) was confirmed by cellular morphology and molecular diagnostics. Following an objective response to chemotherapy, the dog was euthanized 8 months after diagnosis, and a postmortem examination confirmed the clinical findings. This is the first reported case of a monoclonal gammopathy secondary to a gastric EMP coupled with aberrant expression of CD3 in an aggressive plasmacytic tumor, and highlights the utility of molecular diagnostics for classifying atypical hemolymphoid neoplasms

    The CEDAR Project

    Full text link
    We describe the plans and objectives of the CEDAR project (Combined e-Science Data Analysis Resource for High Energy Physics) newly funded by the PPARC e-Science programme in the UK. CEDAR will combine the strengths of the well established and widely used HEPDATA database of HEP data and the innovative JetWeb data/Monte Carlo comparison facility, built on the HZTOOL package, and will exploit developing grid technology. The current status and future plans of both of these individual sub-projects within the CEDAR framework are described, showing how they will cohesively provide (a) an extensive archive of Reaction Data, (b) validation and tuning of Monte Carlo programs against these reaction data sets, and (c) a validated code repository for a wide range of HEP code such as parton distribution functions and other calculation codes used by particle physicists. Once established it is envisaged CEDAR will become an important Grid tool used by LHC experimentalists in their analyses and may well serve as a model in other branches of science where there is a need to compare data and complex simulations.Comment: 4 pages, 4 postscript figures, uses CHEP2004.cls. Presented at Computing in High-Energy Physics (CHEP'04), Interlaken, Switzerland, 27th September - 1st October 200

    Learning Activism: The Intellectual Life of Contemporary Social Movements

    Get PDF
    • …
    corecore